Die 12 besten Strategien zum maschinellen Lernen für E-Commerce-Unternehmen

Die 12 besten Strategien zum maschinellen Lernen für E-Commerce-Unternehmen

In der heutigen Welt des E-Commerce ist es unmöglich, einen erfolgreichen Online-Shop zu betreiben, ohne maschinelles Lernen zu nutzen.

In diesem Artikel erfahren Sie, wie Sie maschinelles Lernen auf einfache Weise in Ihr Unternehmen einbinden können:

  • Für die Optimierung der Preisgestaltung
  • Für die Optimierung der Suchergebnisse
  • Für Produktempfehlungen
  • Und viele mehr

Fangen wir an!

maschinellen Lernen für E-Commerce

Heute, wo der weltweite E-Commerce-Umsatz 4,88 Billionen Dollar beträgt, ist es ein Spiel für Innovatoren.

Laut Gartner werden heute bis zu 80% der Kundeninteraktionen durch KI gesteuert.

Die Einführung von KI in Vertrieb, Marketing und sogar Bestandsmanagement ist sowohl ein natürlicher nächster Schritt in der Evolution des Handels als auch ein absolutes Muss für diejenigen, die mithalten und kosteneffiziente Entscheidungen treffen möchten.

Und in diesem Artikel zeigen wir Ihnen, wie Sie KI effektiv in Ihrem E-Commerce-Geschäft einsetzen können.

Beginnen wir mit der Antwort auf….

Wie maschinelles Lernen im E-Commerce funktioniert


Wenn wir maschinelles Lernen in den einfachsten Begriffen definieren wollen, handelt es sich um die Untersuchung und Erstellung von Algorithmen, die aus gegebenen Datensätzen lernen und daraus Trends und Ergebnisse vorhersagen können.

Dies ist eine notwendige Funktion jedes auf Algorithmen basierenden Systems, das mit großen, sich häufig ändernden Datensätzen umgehen muss – von der Suche in natürlicher Sprache (unter Berücksichtigung von Wortwahl, Tippfehlern und neuen Ausdrücken) bis hin zur Gesichtserkennung (bei der das System im Grunde nie zweimal auf die gleiche Eingabe trifft, aber dennoch die wichtigsten Merkmale bestimmen muss). Maschinelles Lernen wird bei der E-Mail-Filterung, der Wettervorhersage, der Diagnose von Krankheiten und der Vorhersage von sozioökonomischen Trends eingesetzt.

E-Commerce ist ein Bereich, der maschinelles Lernen dringend benötigt. Selbst ein kleiner Webshop kann täglich Millionen relevanter Datenpunkte erzeugen, die ein einzelner Mensch oder sogar ein Team von Experten niemals vollständig erfassen und nutzen könnte.

Aber, eine Maschine kann es schaffen.

Es wird nicht nur diese Datensätze, Veränderungen und Trends in ihnen überwachen, sondern auch Verbindungen herstellen.

Eine KI, die auf maschinellem Lernen basiert, erstellt Schlussfolgerungen. Eine Deduktion basierend auf Erfahrung.

Es kann zum Beispiel helfen bei…

1. Optimierung der Preisgestaltung


Der Preis ist, wenig überraschend, einer der wichtigsten Faktoren, wenn es um einen Kauf geht. In der Tat ist der Preis laut BigCommerce für mindestens 47% der Kunden einer der wichtigsten Treiber.

Wenn Ihre Preise hoch sind – oder einfach nur höher als die Ihrer Konkurrenten – kann Ihre Abbruchrate steigen, und noch mehr, wenn Sie die Versandpreise nicht korrekt festlegen. Wenn Ihr Shop internationalen Versand anbietet, müssen Sie auch die Preise basierend auf dem Standort des Kunden anzeigen.

Es gibt viele andere Faktoren, die Ihre Preise beeinflussen können – Angebot und Nachfrage, welche Werbeaktionen laufen, welche Tages- oder Jahreszeit es ist und so weiter.

Mittels maschinellem Lernen könnten diese Faktoren in einem Bruchteil einer Sekunde bewertet werden und Ihre Website kann so dynamische Preise anzeigen: Sie zeigen dem Kunden den aktuellsten Preis für ihn, basierend auf den oben genannten Faktoren.

Dies stellt sicher, dass die Preise sofort verstanden werden (kein „wie viel ist das in meiner Währung“, „sind die Versandkosten enthalten“ usw.), ohne Überraschungen, und ohne dass Sie sie manuell ändern müssen.

2. Segmentierung, Personalisierung und Ansprache von Kunden


In traditionellen stationären Geschäften wurde die Segmentierung ausschließlich von Verkäufern vorgenommen, die auf die Kunden zugingen. Durch Beobachtung und ein paar Fragen konnten sie mehr als genug Informationen über die Demografie, ihre Bedürfnisse und Zweifel sowie ihre allgemeine Stimmung anhand der nonverbalen Kommunikation sammeln.

Auf diese Weise war es möglich, alle Bedenken zu den Produkten sofort anzusprechen, die vom Kunden verwendeten Wörter und Ausdrücke zuzuordnen, an Ort und Stelle Upsells anzubieten und seine Kaufabsicht zu verstärken.

Wenn der Kunde sich mit einem Online-Erlebnis auseinandersetzen muss, muss all dies ersetzt und skaliert werden.

Die Segmentierung muss auf einem Verhalten basieren, das gemessen werden kann.

Und die Suche auf der Website ist ein großartiger Ort, um damit zu beginnen.

Bei der Suche verwenden Käufer natürliche Sprache, die Hinweise auf ihren Hintergrund und ihre Muttersprache gibt. Anhand der Ergebnisse, auf die sie klicken, kann ein Algorithmus feststellen, wonach sie suchen, und ihnen relevantere Ergebnisse anbieten, was sie zum Kauf ermutigt.

Und basierend auf dem, was andere Kunden im Laden zuvor gekauft haben, in Verbindung mit dieser speziellen Suche, könnten Cross- und Upsell-Angebote generiert werden. Ein Teil der demografischen Informationen ist sofort verfügbar, sobald sich jemand anmeldet – meistens kennen Sie das Alter, den Standort und alle anderen Daten, nach denen Sie fragen.

Sie können auch ihr Verhalten auf Ihrer Website überwachen – welche Inhalte sie lesen, welche Materialien sie herunterladen, wie oft sie zurückkommen und wie oft sie einen Kauf tätigen.

Sie können auch verfolgen, welche Art von E-Mails sie öffnen und wann sie im Laufe eines Tages, einer Woche oder eines Jahres am ehesten einen Kauf tätigen.

Aus all diesen Interaktionen kann eine unglaubliche Menge an Daten generiert werden – und maschinelles Lernen macht es möglich, Verhaltensweisen zu bewerten, um Muster zu ermitteln.

Diese Muster helfen Ihnen, die Datensätze sinnvoll zu nutzen und effektivere Marketingentscheidungen zu treffen. So können Sie beispielsweise extrem zielgerichtete Kampagnen mit den relevantesten Botschaften erstellen und Ihre Konversionsrate erhöhen, indem Sie Kunden genau das anbieten, wonach sie suchen.

3. Optimierung der Suchergebnisse


Die Bereitstellung von Suchergebnissen auf Basis von Schlüsselwörtern ist nur der allererste, grundlegendste Schritt bei der Website-Suche. Um den Käufern das bestmögliche Erlebnis zu bieten, sollte Ihre Suche viel tiefer gehen als das.

Mit einem ausreichend großen Datensatz können Sie feststellen, welche Ergebnisse für Personen an bestimmten Orten besser sind, wie man Suchergebnisfilter optimieren kann und welche Produkte am besten zu ihren Bedürfnissen passen, basierend auf ihrem bisherigen Verhalten.

Indem Sie die Daten analysieren und herausfinden, welche Artikel zusammenpassen, können Sie auch ähnliche Produkte empfehlen und sogar Cross-Selling-Artikel anbieten, die von Ihren Benutzern häufig zusammen gekauft werden.

Maschinelles Lernen ist in der Lage, Trends und Muster zu erkennen, um diese automatisch zu bestimmen.

Dies zu nutzen führt zu höheren Klickraten auf Ihren Ergebnisseiten, höheren Konversionsraten und einem höheren durchschnittlichen Bestellwert.

Es ist erwähnenswert, dass das Filtern von Ergebnissen in Echtzeit auf Basis von Benutzereingaben über die Facettensuche, gepaart mit KI-basierten Empfehlungen, derzeit die effektivste Methode ist, um relevante Ergebnisse zu liefern.

Aber bleiben wir noch eine Minute bei den Empfehlungen…

4. Produktempfehlungen


Wenn Sie neugierig sind, wie effektiv automatische Produktempfehlungen sind, dann schauen Sie sich nur Netflix an. Laut McKinsey werden 75% dessen, was Menschen auf der Streaming-Plattform sehen, ihnen über einen Algorithmus vorgeschlagen, der das Nutzerverhalten analysiert. (Das Gleiche gilt für 35% der Einkäufe bei Amazon).

Man könnte meinen, dass es einfach ist, herauszufinden, welche Produkte gut zusammenpassen – zum Beispiel, indem man einfach verfolgt, was die Leute anschauen, nachdem sie Futurama beendet haben, und wenn es „Rick and Morty“ ist, empfiehlt man einfach das.

Aber Sie sollten auch die Demografie berücksichtigen – Menschen in nicht-englischsprachigen Ländern greifen vielleicht mit mehr Begeisterung zu Filmen und Serien in ihrer Muttersprache. Die Vorlieben von jungem und älterem Publikum werden sich ebenso unterscheiden wie der Geschmack von Menschen, die in den Metropolen der Ostküste leben, im Vergleich zu jenen in ländlichen europäischen Städten.

Und das berücksichtigt noch nicht einmal den persönlichen Geschmack von Genres, Stilen, Längen, Epochen usw.

Um Ihren Kunden ultra-gezielte Produkte anbieten zu können, müssen Sie mit einer sehr großen Anzahl von Variablen arbeiten, die alle unterschiedlich gewichtet sind.

Ohne einen Algorithmus für maschinelles Lernen ist dies praktisch unmöglich – selbst wenn Sie nur ein paar hundert Produkte haben.

Wie Sie sehen, ist die Kenntnis Ihrer Kunden ein bisschen wie die Vorhersage der Zukunft.

Werfen wir also einen Blick die Kristallkugel und schauen, was sie genau vorhersagen kann…

5. Vorhersagen über Ihre Kunden


Maschinelles Lernen kann Ihnen eine Menge Dinge über die Menschen sagen, die Ihre Website besuchen und einen Kauf tätigen – sogar Dinge wie die Wahrscheinlichkeit, dass sie wieder bei Ihnen kaufen oder woran sie interessiert sein könnten.

Sehen Sie sich an, was maschinelles Lernen vorhersagen kann.

Vorhersage des Customer Lifetime Value


Zur Feinabstimmung Ihrer Kommunikation und Botschaften ist es nützlich zu wissen, wie viel Geld ein Kunde in einem bestimmten Zeitraum in Ihrem Geschäft ausgeben wird.

Wenn Sie einen Deckungsbeitrag basierend auf dem Verhalten abschätzen können, können Sie auch Ihr Marketing kosteneffizienter und gezielter gestalten.

Sie können auch die Kunden identifizieren, die am wertvollsten sind und eine besondere Aufmerksamkeit verdienen.

Vorhersage, ob ein Kunde einen Kauf tätigen wird


Stellen Sie sich folgendes vor: Sie haben einen Online-Shop für Bürobedarf. Sie haben einen Kunden, der etwa alle 6 Monate die gleiche Menge an Tintenpatronen bei Ihnen bestellt.

Nehmen wir an, es vergehen 5 Monate, und dieser Kunde loggt sich auf Ihrer Website ein, bestellt aber nichts. Logischerweise könnte dies bedeuten, dass er die Preise prüft, um die nächste Bestellung zu budgetieren, oder er könnte Ihre Preise mit denen Ihrer Konkurrenten vergleichen.

Als Ladenbesitzer werden Sie höchstwahrscheinlich nie erfahren, dass sie sich angemeldet und dies getan haben.

Die KI wird es jedoch bemerken.

Und es kann ableiten, dass dies der richtige Zeitpunkt ist, um einen kleinen Anreiz zu bieten, um den durchschnittlichen Bestellwert zu erhöhen – da der Kunde ein wiederkehrender, aber zögerlicher Kunde ist, ist es vielleicht an der Zeit, einen Workflow zu starten, der ihm einen persönlichen Rabatt für seine nächste Bestellung bietet, um sich für seine Treue zu bedanken.

Vorhersage von Kundenrückgaben (und Käufen)


Wenn ein Kunde aufgrund seines Verhaltens wahrscheinlich zu einem späteren Zeitpunkt in Ihr Geschäft zurückkehren wird, dann kann eine ganz andere Marketingbotschaft besser bei ihm ankommen.

Algorithmen können langfristig vorhersagen, ob dies der Fall ist und können längere Workflows mit Botschaften initiieren, die auf Loyalität abzielen und das Branding verstärken.

Vorhersage der Kundenabwanderung


Die Bindung bestehender Kunden ist eine der wichtigsten Aufgaben, wenn Sie Ihr Marketingbudget nicht ausbluten lassen wollen. Die Gewinnung von Neukunden ist viel kostenintensiver.

Ein Algorithmus für maschinelles Lernen kann ermitteln, welche Kunden Ihre Website am ehesten verlassen – basierend auf Verhaltensweisen wie: weniger häufige Besuche in Ihrem Geschäft, kleinere Einkäufe usw.

Wenn die KI erkennt, dass dies der Fall ist, kann sie Workflows initiieren, die auf die Kundenbindung abzielen und den Käufern Anreize zum Bleiben geben.

Vorhersage der Kundengröße


Basierend auf dem durchschnittlichen Bestellwert und der Kaufhäufigkeit, zusammen mit anderen Informationen wie Anzahl der Mitarbeiter und Unternehmenstyp, kann ein Algorithmus die Größe des Kunden für Sie schätzen.

Dies gibt Ihnen einen tollen Einblick, um zu entschlüsseln, welchen potenziellen Kunden Sie besondere Aufmerksamkeit schenken sollten. Sie können personalisierte Vorschläge machen und ihnen Angebote unterbreiten, die auf lange Sicht kostengünstiger sind.

Wie Sie sehen können, sagt maschinelles Lernen wirklich Ihre Zukunft voraus, indem es vorhersagt, was Ihre Kunden tun oder nicht tun werden.

Eine weitere zukunftsweisende Anwendung des maschinellen Lernens, die einen eigenen Unterabschnitt verdient, ist…

6. Automatische Vervollständigung der Seitensuche


Eine wirklich nützliche automatische Vervollständigung muss lernen, anstatt verschiedene Attribute und Produktbeschreibungen zu durchforsten.

Es muss die natürliche Sprache der Benutzer verstehen und nicht die oft technischen und maschinenähnlichen Phrasen der Datenbankeinträge.

automatische Vervollständigung

Die Bewährte Praktiken für E-Commerce-Suchfunktionen schreiben vor, dass Online-Shops eine auf künstlicher Intelligenz basierende automatische  Vervollständigung verwenden, da sie die Shopping-Journey rationalisiert und den Käufern ein Gefühl der Bequemlichkeit vermittelt, an das sie sich gewöhnt haben.

Die Verarbeitung natürlicher Sprache und maschinelles Lernen müssen also verstehen, welche Art von Sprache und Phrasen Ihre Kunden verwenden, wie oft sie diese verwenden, ob die Ergebnisse für diese Phrasen zufriedenstellend sind und sogar häufige Tippfehler gemeinsam mit der korrekten Schreibweise.

Auf diese Weise hat jeder Benutzer das Gefühl, dass die Suchmaschine wirklich für ihn da ist und auf die kleinsten Details achtet, ohne dabei lästig zu sein.

Wo wir gerade von Details sprechen…

7. A/B-Tests mit KI


A/B-Tests sind ein mächtiges Werkzeug im Online-Marketing, aber sie können auch schwierig sein.

Angenommen, Sie möchten einen A/B-Test für eine Produktseite durchführen.

Erstens: Was ändern Sie? Die Anzeige der Preise? Die Position Ihrer CTAs? Die Hintergrundfarbe?

Sie sehen, wenn Sie mehr als eine Sache ändern, können Sie nicht wirklich sicher sein, was die nächste positive oder negative Änderung verursacht.

Wenn Sie aber nur eine Sache ändern, kann die Änderung so klein sein, dass sie nicht einmal registriert wird.

Und welche KPIs sollten Sie verfolgen?

Ja, Konversions- und Kaufrate sind die offensichtlichsten Zahlen, die es zu verfolgen gilt.

Aber auch die Verweildauer auf der Seite, die Anzahl der Klicks und die Rücklaufquote sind wichtig.

Maschinelles Lernen und KI erleichtern diesen Prüfprozess:

  • Es entscheidet auf Basis historischer Daten, welche Elemente getestet werden sollen und erstellt automatisch Varianten.
  • Es kann Seitenelemente basierend auf den Testergebnissen dynamisch ändern. Zum Beispiel können Seiten für verschiedene Demografien oder Standorte unterschiedlich angezeigt werden.

Es kann die optimalen Versionen viel schneller finden, weil es alle Variablen berücksichtigen und die Zusammenhänge zwischen selbst kleinen Änderungen finden kann.

8. Chatbots für automatisierten Kundensupport


Beim Kundensupport gibt es selten eine optimale Wahl. Wenn Sie alle Probleme mit menschlichen Arbeitskräften lösen wollen, wird Ihr Support-Team riesig und teuer sein – und überhaupt nicht effizient, da es sich oft mit Dingen beschäftigt, die durch Weiterleitung des Kunden auf eine FAQ-Seite gelöst werden könnten.

Auf der anderen Seite können Sie den Support nicht vollständig automatisieren, da viele Probleme menschliche Hilfe benötigen und Ihre Kunden schnell verärgert sein werden, wenn sie diese nicht bekommen können.

Auf der anderen Seite können Sie den Support nicht vollständig automatisieren, da viele Probleme menschliche Hilfe benötigen und Ihre Kunden schnell verärgert sein werden, wenn sie diese nicht bekommen können.

Die Lösung für dieses Problem ist oft die Implementierung eines Chatbots, der auf maschinellem Lernen basiert.

Diese Chatbots sind in der Lage, ein Gespräch mit dem Kunden zu führen. Nicht nur, indem sie vorher definierte Antworten verwenden, sondern auch über KI. Sie sind in der Lage, aus jeder Konversation über die natürliche Sprache zu lernen.

Natürlich braucht der Chatbot Zeit, um zu lernen, um die Produkte und Dienstleistungen sowie die Kunden und ihre Art der Kommunikation kennenzulernen.

Es wird nie einen Turing-Test bestehen, aber es könnte mit der Zeit Gelegenheiten für Upselling erkennen, kundenspezifische Coupons erstellen und Tickets öffnen, die von Menschen im Kundendienst bearbeitet werden.

Beachten Sie jedoch…

Ein professioneller, maßgeschneiderter Chatbot kann je nach gewünschter Funktionalität zwischen $30.000 und $300.000 kosten.

Apropos gut angelegtes Geld…

9. Bestandsverwaltung


Kennen Sie das, wenn ein intelligenter Kühlschrank Sie daran erinnert, dass Sie keine Milch mehr haben und diese für Sie auf die Einkaufsliste setzt?

ML macht das für E-Commerce- Mal eine Milliarde.

Nun, eigentlich eine Billion, denn etwa 7% des US-BIP (mehr als $1,1 Billionen) sind in Form von Bargeld in Vorräten zusammen mit Forderungen und Verbindlichkeiten gebunden.

Die Lagerverwaltung und Logistik ist an Komplexität nicht zu überbieten.

Wenn Sie einen erfolgreichen Online-Shop betreiben, müssen Sie Ihre Bestände überwachen, Artikel nachbestellen, Nachfragetrends vorhersagen, Auftragnehmer koordinieren, mit Herstellern, Lieferanten und Versanddiensten verhandeln und Ihre Einnahmen entsprechend verwalten.

Das ist genau die Art von Aufgabe, für die maschinelles Lernen gemacht wurde.

Durch die Überwachung Ihres gesamten Inventars und sogar die Vorhersage zukünftiger Trends bei Angebot, Nachfrage und sogar Cashflow können Sie sicher sein, dass Sie mit KI nicht die Fluggesellschaft sind, die Flüge überbucht oder leer fliegt.

Sie werden die Fluggesellschaft sein, die ihren Flugplan für das nächste Jahr mit absoluter Sicherheit plant.

10. Omnichannel Marketing-Boosting mit ML


Lassen Sie uns das Offensichtliche aus dem Weg räumen: Omnichannel-Marketing bringt Ihnen höhere Bindungs- und Konversionsraten und steigert Ihren Umsatz. Aber nur, wenn Sie die verfügbaren Kanäle klug einsetzen.

Natürlich könnten Sie einfach ein Marketing-Team mit engagierten Leuten für soziale Plattformen, E-Mail-Marketing und Content-Erstellung einstellen, und jedem sagen, dass er 100% geben soll.

Aber gibt es einen besseren Weg, dies zu tun?

Ja, den gibt es.

Die Analyse der Daten, die Ihre Kunden bei der Interaktion mit Ihren Aktivitäten auf diesen Kanälen erzeugen, ist von großer Bedeutung.

Basierend auf dem Kundenverhalten – Anzeigen, die gut funktionieren, häufig gelesene Inhalte und E-Mail-Öffnungsraten – können Algorithmen für maschinelles Lernen Ihre Nachrichten analysieren und so anzeigen, dass jeder Kunde die perfekte Nachricht erhält.

Online-Immobilien wurden wichtiger als Fernsehen und Radio, auch weil die Ergebnisse nachverfolgt und die Kampagnen optimiert werden können.

ML ist der natürliche nächste Schritt in dieser Entwicklung.

11. Bildverarbeitung und Erkennung


Die Bilderkennung kann ein großartiges Werkzeug für einen Online-Shop mit Tausenden von Produkten in seinem Bestand sein.

Im Idealfall kann ein Kunde einfach ein Foto hochladen, das er zu Hause oder im Geschäft von einem bestimmten Produkt geschossen hat. Das System verarbeitet es dann auf den Servern des Geschäfts und zeigt sofort eine Antwort mit Verfügbarkeit, aktuellem Preis und Versandinformationen an, damit der Kunde weiß, wo er es kaufen kann.

Dies führt in den meisten Fällen zu einem Kauf, da es die bequemste Einkaufsmethode ist.

Beauty.com verzeichnete beispielsweise eine Umsatzsteigerung von 15%, nachdem es seine visuelle Suchfunktion eingeführt hatte.

Eine weitere mögliche Anwendung der Bildverarbeitung ist es, ultra-gezielte Empfehlungen zu geben. Zum Beispiel die Verarbeitung eines Fotos des Kunden und die anschließende Anwendung von im Geschäft erhältlichen Kleidungsstücken, damit sie sehen können, wie verschiedene Stile an ihnen aussehen würden.

12. Schutz vor Betrug


Betrug ist untrennbar mit dem gesamten Handel verbunden, und der E-Commerce ist besonders anfällig.

Online-Shopping bietet enorme Möglichkeiten für diejenigen, die automatisierte Systeme ausnutzen wollen. Deshalb ist es wichtig, dass Algorithmen vorhanden sind, die betrügerische Aktivitäten erkennen können.

Die Integration eines CAPTCHAs reicht nicht aus. Sie müssen auch das Verhalten überwachen und sich ansehen, wie bestimmte Personen Ihre Seite nutzen.

Die Integration eines CAPTCHAs reicht nicht aus. Sie müssen auch das Verhalten überwachen und sich ansehen, wie bestimmte Personen Ihre Seite nutzen.

Mit maschinellem Lernen können Sie sich wiederholende Muster erkennen, die nicht mit dem menschlichen Verhalten übereinstimmen, wie z.B.: zu schnelles Ausfüllen von Formularen, Öffnen von Dutzenden von Seiten für Sekundenbruchteile, schnelle Eingabe mehrerer verschiedener Datensätze an der Kasse usw.

Fazit


Die Einführung von künstlicher Intelligenz in E-Commerce-Prozesse ist nichts Futuristisches oder gar eine hochkomplexe Aufgabe. Für die meisten Funktionen gibt es bereits Anwendungen und Dienste, die im letzten Jahrzehnt von Menschen entwickelt wurden.

Es ist nicht immer günstig, aber es ist die Kosten wert.

  • Es wird Ihnen helfen, Ihre Kunden und Ihr Publikum besser zu verstehen
  • Es wird helfen, Ihren Umsatz und den durchschnittlichen Auftragswert zu steigern
  • Es erspart unnötige Arbeit 
  • Es bietet tiefe Einblicke, die kein Mensch je haben könnte

Sie müssen natürlich nicht alles auf einmal an die Maschine übergeben. Fangen Sie klein an. Implementieren Sie eine intelligente Suchlösung, beginnen Sie mit Empfehlungen, die auf maschinellem Lernen basieren – und gehen Sie zum Rest über, wenn Sie bereit sind.

Aber beeilen Sie sich, denn die analogen Methoden laufen schnell aus.

Balazs VekonyOnline Marketing Manager – Prefixbox

Balazs ist Online Marketing Manager bei Prefixbox, einer führenden Suchlösung für E-Commerce-Seiten. Er ist ein Marketing-Enthusiast aus Budapest, der sich für neue Technologien und Lösungen interessiert und an die Macht der Suche glaubt.

10 bewährte Praktiken für die automatische Vervollständigung – Wie Sie mit der prädiktiven Suche mehr Umsatz für Ihren Shop generieren

10 bewährte Praktiken für die automatische Vervollständigung – Wie Sie mit der prädiktiven Suche mehr Umsatz für Ihren Shop generieren

Eines ist sicher: Rund 30% der Besucher Ihres Online-Shops werden Ihre Suchfunktion nutzen – und 25% von ihnen werden auf einen Suchvorschlag klicken.

Das heißt, sofern Sie Vorschläge machen.

Aus diesem Grund ist die prädiktive automatische Vervollständigung von Suchbegriffen ein unverzichtbares Werkzeug für jeden Online-Händler.

Und wir sind hier, um Ihnen zu zeigen, wie Sie sie nutzen können, um Konversionen zu maximieren.

automatische Vervollständigung autovervollständigung-suche

Doch zuerst wollen wir die Grundlagen klären.

Was ist die automatische Vervollständigung von Suchbegriffen?


Die automatische Vervollständigung von Suchbegriffen ist die Funktion, die in Echtzeit Schlüsselwort- und Produktvorschläge anzeigt, basierend auf dem, was der Benutzer in das Suchfeld eingibt.

Die Funktion funktioniert ganz einfach: Sie erkennt, was ein Kunde eintippt, und gleicht die Anfrage mit den Daten im Suchindex ab. Wenn im Index Schlüsselwörter oder Phrasen gespeichert sind, die mit der Eingabe übereinstimmen, werden diese vorgeschlagen.

automatische Vervollständigung von Suchbegriffen

In Wirklichkeit ist es etwas komplizierter, weil sie auch die Popularität verschiedener Produkte und Schlüsselwörter bei den Ranking-Vorschlägen berücksichtigen.

Ein Beispiel: Wenn Sie in einem Online-Shop, der Kleidung verkauft, „ba“ eingeben, werden möglicherweise Ballkleider oder Badeanzüge vorgeschlagen. Wenn der Shop Badezimmerzubehör verkauft, könnte er Badezimmerteppiche oder Badewannenkissen vorschlagen.

Wie funktioniert die automatische Vervollständigung von Suchbegriffe?


Abgesehen von der Verwendung des Suchindexes Ihrer Website berücksichtigt die automatische Vervollständigung auch das frühere Nutzerverhalten, da es verfolgt, welche Suchanfragen zuvor gesucht und angeklickt wurden und welche zu einem Kauf führten.

Welche Vorschläge in welcher Reihenfolge erscheinen, kann von weiteren Faktoren abhängen, z.B. von der Häufigkeit der Eingabe bestimmter Begriffe oder von den Klickraten einzelner Vorschläge.

Wie funktioniert die automatische Vervollständigung von Suchbegriffe

Erzielen Sie bessere Verkäufe durch eine effektivere automatische Vervollständigung


Es gibt viele Vorteile der Verwendung einer automatischen Vervollständigung. Doch im Grunde dient es dazu, dass Käufer eine erfolgreiche Suche durchführen können.

Hier sind einige weitere Möglichkeiten, wie es das Kundenerlebnis in Ihrem Shop verbessert:

  • Es verkürzt die Suchzeit, da dem Benutzer relevante Vorschläge präsentiert werden und er schnell zu dem kommt, was er sucht.
  • Es gibt den Benutzern mehr Vertrauen in die Suche und ermutigt sie, mehr Details hinzuzufügen, was zu präziseren Treffern führt.
  • Es verringert die Anzahl, wie oft ein Benutzer auf eine 0-Ergebnisseite gelangt, was insgesamt eine bessere Erfahrung bietet. Wenn relevante Suchanfragen, die mit bestehenden Produktseiten verbunden sind, vorgeschlagen werden, garantiert dies effektiv eine erfolgreiche Suche.
  • Dies führt auch dazu, dass weniger Besucher Ihre Website verlassen. Das bedeutet, dass Sie mehr Zeit und Möglichkeiten haben, Besucher in Käufer zu konvertieren.Es informiert auch potenzielle Kunden über Ihre Produktpalette und dient als eine Art weiche Cross- oder Upsell-Möglichkeit.
bessere Verkäufe durch eine effektivere automatische Vervollständigung

Kurz gesagt: Indem die Suche schneller wird und relevante Ergebnisse gewährleistet, senkt die automatische Vervollständigung die Abbruchrate, erhöht die Konversionsrate und wahrscheinlich sogar Ihren durchschnittlichen Bestellwert.

Wir wissen aus dem B2C Retail Benchmark Report, dass

Die Konversionsraten deutlich höher sind, wenn die Konsumenten eine höhere Intention haben und beispielsweise nach Produkten suchen.

Nachdem wir nun die Grundlagen besprochen haben, lassen Sie uns in die tatsächlichen bewährten Praktiken eintauchen, um die Ergebnisse zu gewährleisten, über die wir gerade gesprochen haben.

Wir haben 10 davon mit detaillierten Beschreibungen hier aufgenommen – beginnen wir mit…

10 Strategien zur automatischen Vervollständigung von Suchbegriffen


1. Wie das Ranking der Vorschläge funktionieren soll


Selbst mit der automatischen Vervollständigung haben Sie nur eine sehr begrenzte Anzahl von Chancen, dem Benutzer die richtigen Abfragen zu zeigen, was ein Ranking unerlässlich macht.

dem Benutzer die richtigen Abfragen zu zeigen

Wie bereits erwähnt, kann es viele Faktoren geben, die das Ranking der Vorschläge beeinflussen. Basierend auf dem Benutzerverhalten können Sie Abfragen, die beliebt sind (und am häufigsten eingegeben werden), zuerst anzeigen.

Sie können sich auch dafür entscheiden, Abfragen zu ranken, die häufiger gekauft werden. Oder Sie können Abfragen, die sich auf laufende Aktionen oder Sonderangebote beziehen, zuerst anzeigen.

2. Personalisierung macht die automatische Vervollständigung effektiver


  • Es gibt drei grundlegende Möglichkeiten, den automatischen Suchvorschlag in der Suche zu personalisieren:
  • Berücksichtigen Sie den Standort des Kunden, und zeigen Sie ihm Suchanfragen, die in seiner Gegend beliebt sind – oder schließen Sie solche aus, die irrelevant sind.
  • Berücksichtigen Sie die Sprache: Wenn Ihr Online-Shop mehrsprachig ist, zeigen Sie jedem Benutzer Vorschläge in seiner bevorzugten Sprache an, um eine bessere Benutzererfahrung zu ermöglichen.Beziehen Sie ihre Suchhistorie mit ein: Machen Sie Vorschläge, die für das relevant sind, wonach sie zuvor auf der Website gesucht haben.
Personalisiete Automatische Vervollständigung

3. Halten Sie Vorschläge einfach und überschaubar


Ihre Vorschläge sollten den verfügbaren Platz nicht ausdehnen oder überladen – was auf einem mobilen Bildschirm noch wichtiger ist, wenn man bedenkt, dass Tastaturen normalerweise 30% des Bildschirms einnehmen.

einfach und überschaubar Vorschläge

a. Halten Sie die Liste der Vorschläge überschaubar


Am besten ist es, wenn Sie Ihre Vorschläge auf 10 Elemente oder weniger beschränken (und deshalb ist das richtige Ranking so wichtig).

Wenn Ihre Vorschlagsliste länger ist, kann eine Reihe unangenehmer Dinge passieren:

  • Dadurch wird die Suchzeit länger, da der Benutzer durchblättert.
    Vorschläge, die außerhalb des Bildschirms erscheinen, werden möglicherweise ganz ignoriert.
  • Das Paradoxon der Wahl kann eintreten und zu einer Wahllähmung führen. Das bedeutet im Grunde, dass unser Gehirn, wenn uns zu viele Optionen präsentiert werden, sich oft dafür entscheidet, einfach ganz auszusteigen, anstatt Energie für das Abwägen aller Optionen zu verschwenden.
  • Auf einem mobilen Bildschirm liegt die bevorzugte Anzahl von Vorschlägen bei 4-8, und kann sogar noch weniger sein, wenn sie nicht nur Abfragen, sondern präzise Produkte mit Fotos und Beschreibungen enthalten.

Wenn Sie mehr Schlüsselwörter und Produkte anzeigen möchten, sollten Sie stattdessen ein Layout mit 2 Spalten in Betracht ziehen.

b. Vermeiden Sie eine Bildlaufleiste


Wenn sich Ihre Vorschläge in einen Bereich erstrecken, der nur durch Scrollen zugänglich ist, können wiederum viele Probleme auftreten.

Zum einen werden diese anfänglich versteckten Vorschläge wahrscheinlich ignoriert, aber wenn nicht, erhöht sich die Suchzeit wieder.

Auch die Tatsache, dass dem Benutzer eine zusätzliche Aufgabe abverlangt wird, verschlechtert das Erlebnis. Ebenso wie die Tatsache, dass sie nicht sofort einen schnellen Überblick über ihre Auswahl erhalten können.

Eine Suchleiste im Vorschlagsfeld kann auch designtechnische Probleme verursachen, auf die wir hier aber nicht näher eingehen werden.

c. Reduzieren Sie das visuelle Rauschen


Bei modernen Suchlösungen kann das Vorschlagsfeld mit einer Vielzahl von Elementen wie Text, Preisen, Fotos, Kurzbeschreibungen etc. gefüllt werden.

Während diese den Käufern helfen können, sollten Sie darauf achten, nicht zu viele zusätzliche Elemente einzubauen, da dies den Fokus von den eigentlichen Vorschlägen ablenken und die Kunden mehr verwirren kann, als es ihnen hilft.

Unser Vorschlag ist, das visuelle Rauschen auf ein Minimum zu beschränken. Fügen Sie sowohl Keyword- als auch Produktvorschläge, Preise und Fotos ein, wo dies relevant ist.

4. Hervorheben von Vorschlägen zur automatischen Vervollständigung


Das Hervorheben bestimmter Elemente Ihrer prädiktiven Vorschläge hilft dem Benutzer, den Fokus zu behalten und die Funktion natürlicher zu nutzen. Hier ist, worauf Sie ein Auge haben sollten:

a. Heben Sie die Unterschiede hervor


Anstatt hervorzuheben (was in der Regel durch Fettdruck geschieht), was der Kunde bereits eingegeben hat, ist es viel effektiver, stattdessen den prädiktiven Teil der Vorschläge hervorzuheben.

So können sie sich leichter darauf konzentrieren und den Unterschied zwischen den Vorschlägen feststellen, was zu einer schnelleren Entscheidung führt.

den prädiktiven Teil der Vorschläge hervorzuheben

b. Markieren Sie den aktiven Vorschlag


Wenn Sie zwischen Vorschlägen wählen, sollten Sie deutlich anzeigen, über welchem Vorschlag die Maus des Benutzers schwebt bzw. welcher Vorschlag bei Käufern mit Tastaturnavigation (die in Ihrer automatischen Vervollständigungsfunktion unterstützt werden muss) aktiv ist.

Das schafft Klarheit und hilft, Fehler zu vermeiden: wie z.B. den falschen Vorschlag zu wählen und zurückgehen zu müssen.

Außerdem sollten die aktiven Vorschläge in die Suchleiste kopiert werden. Dies hilft dem Benutzer zu verstehen, wie die automatische Vervollständigung funktioniert und ermöglicht es, den Vorschlag durch weitere Details zu erweitern, was zu präziseren Ergebnissen führt.

Die Hervorhebung des aktiven Vorschlags erfolgt in der Regel am besten mit einer einfachen Hintergrundschattierung.

c. Unterschiedliche Vorschläge unterschiedlich gestalten


Wie wir bereits besprochen haben, können mehrere verschiedene Vorschlagsarten in Ihrem Feld erscheinen, und Sie müssen dem Benutzer helfen, den Unterschied zwischen ihnen zu verstehen.

Nehmen wir an, dass Sie neben prädiktiven Abfragen auch Produkte und/oder Produktkategorien einbeziehen. Wenn Sie diese zusammen gruppieren, achten Sie darauf, sie zu unterscheiden. Gestalten Sie z.B. den Text anders. Beispielsweise durch eine andere Farbe.

Wenn alle verschiedenen Arten von Vorschlägen als gleich dargestellt werden, könnten die Benutzer den Unterschied nicht verstehen, sie ignorieren oder solche auswählen, die nicht wirklich relevant sind.

Kleine Änderungen im Stil machen es dem Benutzer leichter, die präsentierten Vorschläge zu scannen und sich auf die zu konzentrieren, die ihn interessieren.

Kleine Änderungen im Stil machen es dem Benutzer leichter, die präsentierten Vorschläge zu scannen

d. Stil für Lesbarkeit


Besonders auf mobilen Geräten ist es sehr wichtig, dass die Kunden die Vorschläge tatsächlich lesen und auch leicht die auswählen können, für die sie sich interessieren.

Um die Lesbarkeit zu gewährleisten, sollten die Vorschläge in einer ausreichend großen Schriftgröße und mit genügend Abstand, vielleicht sogar mit Trennzeichen, dargestellt werden, damit das Antippen nicht versehentlich zur Auswahl einer anderen Option führt.

5. Bieten Sie klare Anweisungen


Die genaue Funktionsweise einer automatischen Vervollständigungsfunktion ist den Nutzern möglicherweise nicht auf Anhieb klar, vor allem, wenn man bedenkt, wie unterschiedlich die Suchlösungen auf Websites sein können.

Um ihnen bei der Nutzung der Funktion zu helfen, kann die Bereitstellung von Anweisungen und Beschriftungen sehr nützlich sein. Dazu können Überschriften in der Liste gehören, z.B. die Trennung von „Suchvorschlägen“, „Kategorien“, „Artikeln“ und so weiter.

Überschriften in der Liste gehören

Dies wird den Benutzern helfen, zu verstehen, wie die Liste strukturiert ist, sodass sie sie leichter scannen und ihre Aufmerksamkeit auf die für sie relevanten Vorschläge lenken können. Durch die Vermischung der verschiedenen Vorschläge und ohne die Klärung dieser Details kann es sein, dass der Benutzer trotz seiner ursprünglichen Absicht einen Artikel statt eines Produkts auswählt oder auf einer Kategorieseite statt auf einer allgemeineren Ergebnisseite landet.

6. Visueller Fokus und Einfachheit


Wenn der Kunde die Suchfunktion nutzt, sollte dem Feld der automatischen Vervollständigung zusammen mit der Suchleiste absolute Priorität in Bezug auf die visuelle Aufmerksamkeit eingeräumt werden.

a. Design für visuelle Tiefe


Dem Feld der automatischen Vervollständigung Vorrang zu geben, lässt sich leicht erreichen, indem man den Rest der Seite – in diesem Fall den Hintergrund – abdunkelt.

automatischen Vervollständigung Vorrang zu geben, lässt sich leicht erreichen, indem man den Rest der Seite – in diesem Fall den Hintergrund – abdunkelt.

Dies hilft dabei, die Elemente auf der Website auszublenden, die um die Aufmerksamkeit des Käufers kämpfen – CTA-Schaltflächen, Banner, Produktfotos und so weiter. Auf diese Weise kann der Kunde leicht seinen Fokus behalten und wird nicht abgelenkt.

b. Reduzieren Sie die visuelle Konkurrenz


Auf mobilen Geräten können direktive Elemente wie Navigation oder Shortcuts neben oder sogar über dem Eingabefeld der automatischen Vervollständigung erscheinen, was die Navigation problematisch macht und den Nutzer ablenkt.

Achten Sie darauf, wo Sie Ihre Live-Chat-Option, ein Symbol für den Einkaufswagen oder sogar fixe Kopfzeilen platzieren, um sicherzustellen, dass sie nicht von der Sucherfahrung ablenken.

Indem Sie diese ablenkenden Elemente minimieren

Indem Sie diese ablenkenden Elemente minimieren, können Sie Fehlklicks reduzieren und ein viel reibungsloseres Erlebnis bieten.

7. Unterstützung von Mausinteraktion als auch Tastaturnavigation


Kunden sollten sehen können, über welchem Vorschlag sie schweben. Dies kann durch Hervorheben der jeweiligen Zeile geschehen. Sie können auch den Handcursor aufrufen, um zu verdeutlichen, dass sie auf die Vorschläge klicken können und dadurch auf eine Ergebnisseite gelangen.

Vorschläge klicken können und dadurch auf eine Ergebnisseite gelangen

Es ist wichtig, eine Tastaturnavigation zur Verfügung zu stellen (vor allem, da die meisten von uns Google für die externe Suche verwenden und uns diese Funktionalität sehr vertraut ist).

Mit den Auf- und Abwärtspfeilen sollte der Kunde zwischen den Vorschlägen wechseln und durch Drücken der Eingabetaste auswählen können.

8. Spezifische mobile Optimierungen


Es gibt einige Dinge, die sehr, sehr wichtig sind und auf die man achten muss, wenn man die automatische Vervollständigung für einen kleinen Bildschirm gestaltet.

Hier sind die wichtigsten:

a. Textumbruch


Wir haben bereits erwähnt, dass Sie nicht versuchen sollten, Ihr Vorschlagsfeld mit einer vertikalen Bildlaufleiste zu erweitern. Wir raten auch von einer horizontalen Bildlaufleiste ab. Angesichts der begrenzten Bildschirmgröße und einer ausreichend großen Schrift für die Lesbarkeit werden viele Vorschläge, einschließlich langer oder mehrfacher Schlüsselwörter, nicht in ihre Zeile passen.

Wenn Sie den Vorschlag einfach abkürzen, indem Sie „…“ am Ende einfügen, verwirren Sie den Kunden, der nicht genau weiß, worauf er klicken könnte, da ein Teil der Info fehlt.

Wie können Sie also dieses Problem lösen?

Verwenden Sie den Textumbruch und erweitern Sie Vorschläge bei Bedarf auf mehrere Zeilen, auch wenn dadurch weniger Optionen sichtbar sind.

Die Bereitstellung ausreichender Informationen, bevor sich der Kunde auf einen Klick festlegen muss, ist von entscheidender Bedeutung.

Verwenden Sie den Textumbruch

b. Teilweise Verdeckung der letzten sichtbaren Vorschläge


Auf mobilen Geräten ist das Scrollen in vielen Fällen unvermeidlich, besonders wenn Sie Vorschläge in mehreren Zeilen anzeigen müssen.

Anstatt eine Bildlaufleiste hinzuzufügen, gibt es ein paar andere Dinge, die Sie tun können.

Die beste Option ist wahrscheinlich, wenn Sie das letzte Ergebnis teilweise verdecken – was ein deutlicher Hinweis darauf ist, dass die Liste unten weitergeht.

In Anbetracht der verschiedenen Bildschirmgrößen, Browser, Schriftarten usw. ist es nahezu unmöglich, dies jedes Mal richtig hinzubekommen, da es einfach zu viele Variablen gibt.

Teilweise Verdeckung der letzten sichtbaren Vorschläge

Sie sollten also Ihre Analysen überprüfen, um herauszufinden, welche Geräte am häufigsten für den Zugriff auf Ihren Shop verwendet werden, und speziell für diese optimieren.

Die meisten Benutzer werden immer noch einen der Vorschläge auswählen, die sofort sichtbar sind, aber mit dieser Methode können Sie eine reibungslose Erfahrung für diejenigen bieten, die die gesamte Liste erkunden möchten.

c. Einfaches Beenden der automatischen Vervollständigung (und Entfernen einer Abfrage)


Wenn ein Kunde beschließt, die Suchleiste nicht weiter zu nutzen und zum Durchsuchen der Website zurückkehren möchte, sollte er das problemlos tun können.

Die Bereitstellung eines „X“-Symbols zum Löschen der Abfrage, anstatt dies manuell tun zu müssen, ist eine praktische Lösung, um das Surf-Erlebnis des Kunden zu verbessern.

Einfaches Beenden der automatischen Vervollständigung (und Entfernen einer Abfrage

9. Vorschläge für die Kategoriesuche


Wenn ein Kunde beginnt, eine Anfrage in die Suchleiste einzugeben, möchte er vielleicht nur erkunden, was Sie in einer bestimmten Produktkategorie haben.

Die Bereitstellung von Kategorievorschlägen ist eine sehr bequeme Methode, die es den Nutzern ermöglicht, Ihre Produkte zu durchsuchen und das zu finden, was sie kaufen möchten.

Bereitstellung von Kategorievorschlägen

Dies spart Zeit für den Kunden und sorgt für einen klaren Weg, was die Benutzererfahrung reibungsloser macht.

Wie wir aber bereits besprochen haben, möchten Sie visuelle Unordnung und Verwirrung vermeiden. Weisen Sie deutlich darauf hin, dass Kategorievorschläge keine Schlüsselwortvorschläge sind. Tun Sie dies mit einer einfachen Überschrift und/oder durch Verwendung eines anderen Stils.

10. Geschwindigkeit ist entscheidend: Automatische Vervollständigung in Echtzeit


Ihre automatische Vervollständigung sollte immer Vorschläge in Echtzeit liefern.

Wenn es langsamer ist, kann es für den Benutzer irritierend sein, da er die Verzögerung visuell wahrnehmen kann – wie bei einer Website, die einzelne Elemente langsam lädt.

Wenn die automatische Vervollständigung von Suchbegriffen nicht in Echtzeit erfolgt, sind alle oben genannten bewährten Praktiken wertlos, da niemand eine Suchleiste verwenden wird, die er als nutzlos empfindet.

Die Vorschläge müssen gleich bei der Eingabe des ersten Zeichens der Abfrage erscheinen und sollten sich mit jedem weiteren Tastendruck ändern, um die relevanten Optionen anzuzeigen.

Zusammenfassung


Wenn Sie während der Customer Journey ein Höchstmaß an Qualität bieten, können Sie den Umsatz Ihres Shops direkt steigern. Ein besseres Sucherlebnis führt zu höherer Zufriedenheit, besserer Erfahrung und insgesamt zu höheren Konversionsraten und durchschnittlichem Bestellwert.

Wenn Sie die bewährten Praktiken in Ihrem Geschäft anwenden, können Sie genau das erreichen.

Erinnern Sie sich an die grundlegendsten Richtlinien:

  • Die automatische Vervollständigung sollte in Echtzeit stattfinden.
  • Sie sollte relevante Ergebnisse liefern – die personalisiert werden können.
  • Es sollte eine klare visuelle Anleitung für deren Verwendung bieten.
  • Wenn es in Gebrauch ist, sollten alle anderen Seitenelemente in den Hintergrund treten.

Natürlich kann es schnell kompliziert werden, und die Feinabstimmung kann sehr zeitaufwändig sein. Um die besten Ergebnisse zu erzielen, empfehlen wir daher die Zusammenarbeit mit Experten für die On-Site-Suche.

Wie immer, wenn Sie Fragen oder Anregungen zur Erweiterung dieser Liste haben, kontaktieren Sie uns!

Paige TyrrellMarketingleiterin – Prefixbox

Paige ist Marketingleiterin bei Prefixbox, einer führenden E-Commerce Website-Suchlösung. Sie ist Amerikanerin, lebt seit 2017 in Budapest und liebt es, #alwayslearning-Sessions zu geben, um Menschen bei der Optimierung ihrer Online-Shops zu helfen.